Product Analytics

Jump to navigation Jump to search

About Us[edit]

Monthly report on key Product metrics
Monthly report on key Product metrics

Nurturing data-informed decision-making in Product since 2018-02-01.

Our Mission & Values[edit]

We deliver quantitatively-based user insights to inform decision-making within the Foundation and the Wikimedia Movement in order to support Wikimedia’s strategic direction toward service and equity.

We strive to provide guidance, insights, and data that are:

Ethical The data we use are ethically sourced & applied.
Trusted Our analysis is reliable & valid. We clarify our level of certainty, flag issues if they arise, and provide caveats as needed.
Impactful We focus on providing insights that impact product development and organizational decisions.
Accessible Our colleagues can access the data they need and understand how to use it. Our guidance and insights are clear and digestible.
Inclusive Inclusivity and equity are fundamental moral imperatives.

In our daily work, we seek out diverse perspectives and abilities to strengthen the quality of our analysis.

Inspired We spark creativity through deep thought, collaboration, and fun!

Product Analytics primarily supports teams within Product, but we also support teams across the Foundation as well as community members in the Wikimedia Movement.

Our Work[edit]

  • Empowering others to make data-informed decisions through education and self-service analytics tools
  • Helping others set and track goals that are achievable and measurable
  • Helping set up Wikimedia products to collect useful data without harming user privacy
  • Ensuring that data collected is high-quality
  • Extracting insights from the Foundation's data repositories
  • Building dashboards and reports for tracking success and health metrics
  • Designing and analyzing experiments (A/B tests)
  • Doing ad-hoc analyses and machine learning projects
  • Developing tools and software for working with data, in collaboration with Analytics Engineering and Product Analytics Infrastructure.
  • Helping others work with teams like Analytics Engineering, Security, and Legal to address data-related issues

Product Team Support[edit]

Each analyst is a point person for a team, project, or program. Our goals are to maintain context and domain knowledge while also allowing for flexibility in analyst work assignments.

Analyst Point person for...
Connie Self-Service Reporting & High-Level Metrics
Jennifer Anti-Harassment Tools & Community Tech
Maya Data Quality & Reporting
Megan Web & Editing
Mikhail Management Support/Delegate & Data Dexterity Lead
Morten Growth & Structured Data
Neil Language & Inuka
Shay Android & iOS

Teams that do not currently have an assigned point person are encouraged to submit requests through Phabricator. Depending on the team's capacity and organizational needs, we may also accept requests from others in the Wikimedia Foundation. The team reserves "10 percent time" to work on professional development.

The team's manager is Kate Zimmerman, Head of Product Analytics, who is responsible for developing an overall strategy for product analytics, prioritizing requests, managing capacity, and professionally developing members of the team.

Who's on the team?[edit]


Listed alphabetically by first name within each section


  • Kate Zimmerman, Director of Data Science
    • Product Owner for Better Use of Data program
    • Ask me about: Collaborating with Product Analytics, using data to inform product and business decisions, experiment design, decision science, applied stats

Team Members[edit]

  • Connie Chen, Sr. Data Scientist
    • Ask me about:
  • Jennifer Wang, Staff Data Scientist
    • Ask me about: AHT/Comm tech metrics
  • Maya Kampurath, Analyst (Contractor)
    • Ask me about:
  • Megan Neisler, Data Scientist III
    • Ask me about: R, data visualization, reader metrics, technical writing
  • Mikhail Popov, Sr. Data Scientist
    • Ask me about: R, data visualization, search logs, traffic logs, Hive/SQL, Bayesian statistics, machine/deep learning, Bayesian networks & influence diagrams, time series analysis, Google Search Console
  • Morten Warncke-Wang, Staff Data Scientist
    • Ask me about: R, machine learning, spatial (geographic) models, article quality, editor/editing/newcomer metrics, prior research on Wikipedia, and perhaps also time-series modeling (forecasting)
  • Neil Shah-Quinn, Sr. Data Scientist
    • Ask me about: Python for data analysis, SWAP, editor metrics, new editor research
  • Shay Nowick, Sr. Data Scientist
    • Ask me about: Mobile metrics, Pydata and Jupyter Notebooks, cohort analysis

Honorary Members[edit]

  • Irene Florez, Data Analyst (Contractor)
    • Ask me about
  • Jason Linehan, Staff Software Engineer
  • Lani Goto, Technical Program Manager
    • Ask me about: team process, meetings, coordinating cross-team projects

How can I get help with data or analysis?[edit]

Submitting Requests[edit]

Please submit a ticket through Phabricator; our Product Analytics board has details and a template for submitting requests.

For Foundation members who are not familiar with Phabricator, please submit a request using our Google form for Analytics Requests:

Office Hours[edit]

Analysts host weekly office hours (details). Click here to view the calendar or schedule an appointment.

Data FAQs[edit]

See meta:Research:FAQ

How to contact us[edit]

  • Contact information for team members are available on their user pages (linked above).
  • Group mailing list:

Data references, best practices, and reports[edit]

Documentation for tools we use[edit]

  • Phabricator (managing requests and tracking work)
  • Superset (WMF internal dashboards and reports)
  • Turnilo (WMF internal tool for pivoting and exploring data)
  • Event Platform (Various event stream distribution and processing systems we employ at WMF)
  • Piwik/Matomo (JavaScript tracking client used for and other smaller-scale sites)

Team references[edit]