ORES

From MediaWiki.org
Jump to navigation Jump to search
This page is a translated version of the page ORES and the translation is 93% complete.

Outdated translations are marked like this.
Other languages:
English • ‎español • ‎français • ‎italiano • ‎polski • ‎português do Brasil • ‎русский • ‎中文 • ‎日本語 • ‎한국어

ORES (/ɔɹz/, en inglés «Objective Revision Evaluation Service» o «Servicio Objetivo de Evaluación de Revisiones») es un servicio web y una API que proporciona aprendizaje automático como servicio para proyectos de Wikimedia mantenidos por el equipo de la plataforma de clasificación. El sistema está diseñado para ayudar a automatizar el trabajo wiki crítico, por ejemplo, detección y eliminación de vandalismo. Actualmente, los dos tipos generales de clasificaciones que genera ORES se encuentran en el contexto de «calidad de edición» y «calidad del artículo».

ORES es un servicio de back-end y no proporciona directamente una forma de hacer uso de las clasificaciones. Si deseas usar las clasificaciones de ORES, consulta nuestra lista de herramientas que usa clasificaciones de ORES. Si ORES aún no es compatible con tu wiki, consulta nuestras instrucciones para solicitar asistencia.

¿Buscas respuestas a tus preguntas sobre ORES? Comprueba la página de preguntas y respuestas.

Calidad de edición

Flujo de calidad de edición de ORES. Un diagrama descriptivo de las ediciones que fluyen desde "Internet" hacia Wikipedia describe la calidad «desconocida» de ediciones antes de ORES y el etiquetado como «bueno» (good), «necesita revisión» (needs review), «perjudicial» (damaging) que se aplica después de ORES.

Una de las preocupaciones más críticas sobre los proyectos abiertos de Wikimedia es la revisión de las contribuciones potencialmente dañinas («ediciones»). También existe la necesidad de identificar a los colaboradores de buena fe (que puedan estar causando daño inadvertidamente) y ofrecerles apoyo. Estos modelos están diseñados para facilitar el trabajo de filtrado a través de Especial:CambiosRecientes. Ofrece dos niveles de soporte para editar modelos de predicción de calidad: básico y avanzado.

Soporte básico

Suponiendo que las ediciones más dañinas serán revertidas y las que no sean dañinas no se revertirán, pomemos trabajar utilizando el historial de ediciones (y ediciones revertidas) de una wiki. Este modelo es fácil de configurar, pero adolece del problema de que muchas ediciones se revierten por motivos distintos al vandalismo. Para ayudar con esto, creamos un modelo basado en palabras malas.

  • reverted – predice si una edición será finalmente revertida

Soporte avanzado

En lugar de suponer, podemos pedir a los editores que entrenen ORES con aquellas ediciones que son de hecho dañinas damaging y las que parezcan haber sido realiazas de buena fe goodfaith. Esto requiere un trabajo adicional por parte de los voluntarios en la comunidad, pero ofrece una predicción más precisa y matizada con respecto a la calidad de una edición. Muchas herramientas solo funcionarán cuando haya un soporte avanzado disponible para una wiki concreta.

  • damaging – predice si una edición es dañina
  • goodfaith – predice si una edicion fue realizada de buena fe


Calidad de un artículo

Tabla de evaluación de la Wikipedia en inglés. Esta es una captura de pantalla de la tabla de evaluación de Wikipedia en inglés generada por WP 1.0 bot.

La calidad de los artículos de la enciclopedia es una preocupación central para los wikipedistas. Las páginas nuevas deben revisarse y conservarse para garantizar que el spam, el vandalismo y los artículos de ataque no permanezcan en la wiki. Para los artículos que sobreviven a la verificación inicial, algunos wikipedistas evalúan periódicamente la calidad de los artículos, pero esto requiere mucha mano de obra y las evaluaciones a menudo están desactualizadas.

Soporte de evaluaciones

Mientras más rápido se eliminen los borradores realmente problemáticos, mejor. La verificación de nuevas páginas puede ser una gran tarea. Al igual que el problema del contra-vandalismo en las ediciones, las predicciones automáticas pueden ayudar a los verificadores a enfocarse primero en las páginas nuevas más problemáticas. En función de los comentarios que dejan los administradores cuando eliminan páginas (consulta la tabla de registro), se puede entrenar un modelo para predecir qué páginas necesitarán un borrado rápido. Consulta es:WP:BR para ver la lista de criterios para el borrado rápido de Wikipedia en español. Para el modelo en español, utilizamos G3 «Páginas promocionales», G10 «Para mantenimiento elemental», y G11 «A petición del único autor».

  • draftquality – predice si el artículo necesita ser eliminado rápidamente (spam, vandalismo, ataque u OK)

Soporte de escala de la valoración

Para los artículos que sobreviven a la verificación inicial, algunas de las Wikipedias grandes evalúan periódicamente la calidad de los artículos usando una escala que corresponde aproximadamente a la escala de calificación de evaluaciones («wp10») de Wikipedia en inglés 1.0. Tener estas evaluaciones es muy útil porque nos ayuda a medir nuestro progreso e identificar oportunidades perdidas (P.ej., artículos populares de baja calidad). Sin embargo, mantener estas evaluaciones al día es un desafío, por lo que la cobertura es inconsistente. Aquí es donde el modelo de aprendizaje automático wp10 es útil. Al entrenar un modelo para replicar las evaluaciones de la calidad de un artículo que realizan los humanos, podemos evaluar automáticamente cada artículo y cada revisión con una computadora. Este modelo se ha utilizado para ayudar a WikiProyectos en el trabajo de triage de reevaluaciones y para explorar las dinámicas de edición que conducen a mejoras en la calidad de los artículos.

El modelo wp10 basa sus predicciones en las características estructurales del artículo. P.ej. ¿Cuántas secciones hay? ¿Hay un cuadro de información? ¿Cuántas referencias? ¿Y las referencias usan una plantilla {{cite}}? El modelo wp10 no evalúa la calidad de la escritura ni si hay o no un problema de tono (por ejemplo, si se está presionando un punto de vista). Sin embargo, muchas de las características estructurales de los artículos parecen correlacionarse fuertemente con la buena escritura y el tono, por lo que los modelos funcionan muy bien en la práctica.

  • wp10 – predice la clase de evaluación (tipo Wikipedia 1.0) de un artículo o borrador

Tabla de soporte

La siguiente tabla informa el estado del soporte de ORES por wiki y modelo disponible. Si no ves tu wiki en la lista, o no admite el modelo que te gustaría usar, puedes solicitar asistencia.

Current support: https://tools.wmflabs.org/ores-support-checklist/

Uso de la API

ORES ofrece un servicio de API Restful para revertir dinámicamente clasificando información sobre revisiones. ver https://ores.wikimedia.org para más información sobre cómo para utilizar la API.

Si estás consultando el servicio acerca de una gran cantidad de revisiones, se recomienda realizar un lote de 50 revisiones en cada solicitud, tal como se describe a continuación. Es aceptable usar hasta 4 solicitudes paralelas. Para un número aún mayor de consultas, puedes ejecutar ORES localmente

Consulta de ejemplo: http://ores.wmflabs.org/v3/scores/enwiki/?models=draftquality|wp10&revids=34854345|485104318


Example query: https://ores.wikimedia.org/v3/scores/wikidatawiki/421063984/damaging

Local usage

To run ORES locally you can install ORES by

pip install ores # needs to be python3, incompatible with python2

Then you should be able to run it through

echo -e '{"rev_id": 456789}\n{"rev_id": 3242342}' | ores score_revisions https://ores.wikimedia.org enwiki damaging

You should see output of