From MediaWiki.org
Jump to navigation Jump to search
This page is a translated version of the page ORES review tool and the translation is 66% complete.

Other languages:
English • ‎español • ‎فارسی • ‎français • ‎italiano • ‎日本語 • ‎한국어 • ‎polski • ‎português • ‎português do Brasil • ‎русский • ‎سنڌي • ‎中文

这个ORES检查工具是面向用户的关键功能的ORES扩展。它提供了“客观的修订评估服务”来自动评估修订版本的特征:它是破坏性的可能性,它可能有损害的程度,真诚的可能性,可能性将被恢复和整体质量。审查界面综合了生成的得分ORES服务进入MediaWiki的接口。 ORES提供自动评估修订,以帮助编辑。例如,ORES可以预测编辑是否是破坏行为,以及文章的整体质量水平。 有关可用的评分类型的更多信息,请参阅ORES的文档。

故意将默认阈值设置为低以捕获几乎所有故意破坏案件(因此也可能发生许多误报)。 这与反破坏机器人相反,后者将阈值设置为高,仅捕获最明显的故意破坏案例(因此几乎没有误报)。 如果您不想看到大多数编辑的标志,您只需更改ORES灵敏度(见下文)。


如果激活了ORES扩展程序,则可以通过查看Special:Preferences部分查看用户帐户中的审核工具。 审核工具将通过突出显示和标记需要审核的编辑(红色的)来增加最近更改监视列表,因为ORES预测模型判断他们是“破坏性的”。 您还可以通过选择“隐藏良好编辑”选项来过滤这些列表。 当您选择此选项时,审阅工具将隐藏ORES判断为不太可能具有破坏性的任何编辑。 如果您查看编辑并意识到它不是故意破坏,您可以简单地将其标记为已巡查,并且将删除突出显示和标记。


A "needs review" flag is described in the Special:RecentChanges legend.
Configuration settings are available via Special:Preferences.



ORES uses machine learning strategies to "learn" what damaging edits look like, by reviewing examples created by Wikipedians through Wiki labels. These predictions are inherently imperfect because ORES cannot be as smart as an experienced human editor. However, ORES can help make the work of RecentChanges-patrolling easier by flagging edits that might be damaging. This is why the review interface states that flagged edits "may be damaging and should be reviewed". Ultimately, human editorial judgement is necessary for determining which edits are damaging and which edits are not.

See mw:ORES#Edit quality for more information about how "edit quality" is evaluated in ORES.


"Vandalism" is just a subset of what we want to catch when we're doing RC Patrolling. The word "vandalism" implies deliberate malicious intent. However, a patroller's job is to look for damaging edits whether the damage was actually intended or not. Therefore, referring to the edits that the review tool flags as "damaging" is more true to the kind of work the system is designed to support.

Note that the ORES service also provides a model that focuses on the good-faith/bad-faith distinction ("goodfaith"). It'll be easier to take advantage of that when we deploy the next major change to filtering on the RC page for the review tool. See the Including new filter interface in ORES review tool topic under discussion.